2014年1月1日水曜日

重複組合せ(1)

【3種の玉から重複を許して5個を選ぶ組み合わせの数】

上図のような3種の玉から、重複を許して5個を選ぶ組み合わせの数を求める。

この問題は、その組み合せと1対1に対応する別の組み合わせを求める以下の問題を考えます。そして、その組み合わせの数を考えると解けます。

上の3種の玉と4種の指示が入った箱から、
目隠しして5個を取り出す組み合せの数が、
3種の玉から、重複を許して5個を選ぶ組み合わせの数である。

4種の指示を全部選んでも5つ目にはどれかの玉を選ぶことになる。
どれか選ばれた玉を玉1、玉2、玉3の順に上から下にならべ、その玉の間の第n番目の玉の位置に、選ばれた第n玉指示を並べる。
つまり、選んだ玉のうち一番小さい番号の玉を第1番目に並べ、
第2玉指示(1個目の玉を2個目に追加)が選ばれたら、
第2番目に、第2玉指示を並べ、その指示を2つ目の玉の替わりにする。
第3玉指示(2個目の玉を3個目に追加)が選ばれたら、
第3番目に、第3玉指示をならべ、その指示を3つ目の玉の替わりにする。
その他の第n玉指示も同様にする。
その玉と指示とにより、3種の玉から、重複を許して5個を選ぶ組み合わせが指定される。

例えば、以下の組み合わせ:
(1)玉2
(2)第2玉指示(1個目の玉を2個目に追加)
(3)玉3
(4)第4玉指示(3個目の玉を4個目に追加)
(5)第5玉指示(4個目の玉を5個目に追加)
は、
(1)玉2
(2)玉2
(3)玉3
(4)玉3
(5)玉3
の組み合わせに1対1に対応する

大事なポイントは、この玉と指示の組み合わせ(3種の玉と4種の指示から選んだ5つ)が、3種の玉から重複を許して5個を選ぶ組み合わせに1対1に対応することである。
(1)この玉と指示の組み合わせが、5つの玉を選ぶ1つの組み合わせを表す。
(2)逆に、5つの玉を選ぶ1つの組み合わせは、必ず、この玉と指示の組み合わせによって表すことができる。

そのため、
3種の玉から、重複を許して5個を選ぶ組み合わせの数
=3種(3個)の玉と4種の指示から5個を選ぶ組み合わせの数
(3+4)

重複組合せの別解
高校数学(グラフと数式、他)一覧
リンク:高校数学の目次

0 件のコメント:

コメントを投稿